CEG2722: Data Analysis II Command Line Data Processing

- Lecture 1 -

Achraf Koulali

Geospatial Engineering

November 15, 2021

To prepare the skills and knowledge to manipulate data through scripts and programs for final-year projects.

Objectives

- To prepare the skills and knowledge to manipulate data through scripts and programs for final-year projects.
- ► To introduce batch processing concepts and tools.

Objectives

- To prepare the skills and knowledge to manipulate data through scripts and programs for final-year projects.
- ► To introduce batch processing concepts and tools.
- To develop subject-specific programming and scripting skills within current software and tools.

Activities & Assessment

► Four lectures: Monday/Tuesday.

Activities & Assessment

- ► Four lectures: Monday/Tuesday.
- ► One assesment: 50% module evaluation.

- ► Four lectures: Monday/Tuesday.
- ► One assesment: 50% module evaluation.
- ► Submission deadline: 10th January 2022 14:00pm.

Activities

15th November Session 1 Otaining data 22nd November Session 2 23nd November Practical 1 29th November Session 4 Exploring data 6th December Session 5 Towards data modelling 7th December Practical 2 13th December Session 6 Coursework

"Data science" & "Command line"

Figure 1: Practical definition by Mason and Wiggins (2010).

Obtaining data

- ► Download data (e.g., a webpage or server).
- Extract data from another file (e.g., an HTML file or spreadsheet).
- ► Generate data yourself (e.g., GPS surveys).

Scrubbing data

- ► Filtering lines
- Extracting certain columns
- Replacing values
- Extracting words
- Handling missing values
- Converting data from one format to another (e.g. conerting csv to shapefile)

Exploring Data

- ► Look at your data
- Derive statistics from your data
- Create interesting visualizations (e.g. plot locations lat,lon)

Modelling Data

Techniques to create a models, include: Clustering, classification, regression, and dimensionality reduction...

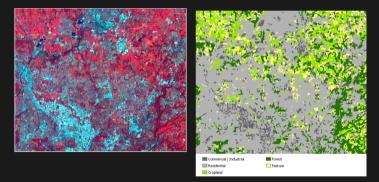


Figure 2: Example of Landsat TM image classification (source: ESRI)

Interpreting Data

Drawing conclusions from your data

Interpreting Data

- Drawing conclusions from your data
- Evaluating what your results mean

Interpreting Data

- Drawing conclusions from your data
- Evaluating what your results mean
- Communicating your result

What is the Command Line?

Figure 3: Command line on Ubuntu

What is the Command Line?

Linux/Unix command line:
\$ whoami
username
<pre>\$ hostname</pre>
Mymachine
\$ date
Mon 17 May 15:13:25 BST 2021

What is Linux?

- Linux is an Operating System (OS) distributed under an open-source license.
- An OS is the software that directly manages a system's hardware and resources, like CPU, memory, and storage.

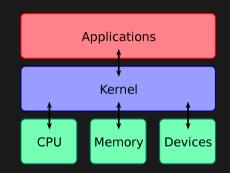


Figure 4: Linux Kernel

- ► Kernel: The kernel manages the system's resources and communicates with the hardware.
- System user space: The administrative layer for system level tasks (inclues command line/shell).
- ► Applications: A type of software that lets you perform a task (Desktop, Apps,...).

Linux distributions

- Desktops/laptops with Linux do have nice graphical user interfaces (KDE, Gnome, ...).
- HPC systems use the Linux command line.

Figure 5: Linux distributions

Why Data Science using Linux?

- ► Free Software / Open Source
- ► Safe & Secure, Linux is renowned for its security.
- ► Efficient: modular, extensible software development.

Why Data Science using Linux?

Command line vs Graphical User Interface (GUI)

- ► Typing.
- Very easy to re-run (mistakes, change in data input).
- Scriptable → the ability to automate tasks.

- Clicking mouse.
- It is not straightforward to automate pointing and clicking.
- GUIs are less suitable for doing scalable and repeatable data science.

► Command line tools can work together: You can also create your own tools.

- ► Command line tools can work together: You can also create your own tools.
- ► The open source community provides new tools on daily basis.

- Command line tools can work together: You can also create your own tools.
- ► The open source community provides new tools on daily basis.
- ► Unix-like operating systems an be found in many places.

- Command line tools can work together: You can also create your own tools.
- ► The open source community provides new tools on daily basis.
- ► Unix-like operating systems an be found in many places.
- ▶ 95% of the top 500 supercomputers are running GNU/Linux [Janssens, 2020].

The percentage of GPS monuments with stainless steel pole in the Ordonance Network?

Step 1: download GPS logfiles from the OS archive.

```
$ cd ~/os_analysis/
$ url="https://www.ordnancesurvey.co.uk"
$ dir="/gps/rinex/station_log_files/"
$ wget -A log -r -l 1 -nd ${archive}${dir}
```

Example of site logfile:

EASI Site Information Form (site log) International GPS Service See Instructions at: ftp://igscb.jpl.nasa.gov/pub/station/general/sitelog_instr.txt

0. Form

Prepared by (full name)	Colin Fane
Date Prepared	2009-03-06
Report Type	Update
If Update:	
Previous Site Log	easi_20080429.1o
Modified/Added Sections	3.2, 4.1, 11

1. Site Identification of the GNSS Monument

Site Name	Easington
Four Character ID	EASI
Monument Inscription	
IERS DOMES Number	
CDP Number	
Monument Description	Stainless Stee

Step 2: search sites with "stainless steel poles"

```
$ total_sites=`ls *.log | wc -l`
$ sites=`grep "^\s\s\s\s\Monument Description" *.log\
| grep -i "Stainless Steel pole" | wc -l`
$ percentage=$(( 10**3 * $sites*100 / $total_sites ))e-3
$ printf "Percentage of monuments with Stainless Steel pole : %.2f%%" "$percentage"
```

Percentage of monuments with Stainless Steel pole : 24%

Using python to plot the distribution of monuments styles:

```
Step 3: visualization
```


Figure 6: Monument description for all sites

▶ We introduced some important concepts of the command line in Linux.

Summary

- ▶ We introduced some important concepts of the command line in Linux.
- We showed an example of how to use command line tools for geospatial data analysis.

Summary

- ▶ We introduced some important concepts of the command line in Linux.
- We showed an example of how to use command line tools for geospatial data analysis.
- ▶ More details and new tools will be introduced during the next sessions.