
CEG2722: Data Analysis II
Command Line Data Processing

- Lecture 4 : Scrubbing Data -

Achraf Koulali

Geospatial Engineering

July 22, 2021

Scrubbing Data

At the end of this session you should be able to:

I Convert data from one format to another

I Filter lines

I Extract and replace values

I Split, merge, and extract columns

I Combine multiple files

Scrubbing Data
I Scrubbing is the second step of the OSEMN model.

I The transformations that you’ll learn in this lecture can be useful at any step of
your data analysis workflow.

Figure 1: Practical definition by Mason and Wiggins (2010).

Scrubbing Data - Filtering Lines

I To show the power of command-line tools for scrubbing geospatial data, we use the
example of the International GNSS Service (IGS) network.

I Suppose, we want to know how many IGS sites are using Leica GR30 receivers.

Step 1: Let’s obtain the data
$ curl https://files.igs.org/pub/station/general/IGSNetwork.csv -O

Filtering Lines

Step 2: use the command grep to search the word “Leica”
$ egrep "LEICA GR30" IGSNetwork.csv | wc -l
8

Filtering Lines

I We can search for all “leica” words using the case insensitive pattern option (-i)

$ egrep -i leica IGSNetwork.csv
We can also search for lines that are not containing the tag "leica"
$ egrep -i -v leica IGSNetwork.csv
To search multiple tags
$ egrep 'LEICA|TRIMBLE' IGSNetwork.csv

Extracting Values

I Now we want to extract the 4-char site names with the GR30 receivers

I To do that, we combine the output of the previous example with the command cut

I cut extracts column(s) from a file

extracts the first 4 characters
$ egrep "LEICA GR30" IGSNetwork.csv | cut -c1-4

Extracting Values

I cut can extract columns while specifying the delimiter.

I By default cut works with tab-delimited files.

extracts the second column. we use -d, since this is a csv file
$ egrep "LEICA GR30" IGSNetwork.csv | cut -d, -f2
multiple columns
$ egrep "LEICA GR30" IGSNetwork.csv | cut -d, -f4-

Testing your knowledge

Quiz 4.1

Print all IGS stations located in the UK (name ending with “GBR”). Use awk or cut to
filter the 1st column.

Replacing and Deleting Values

We can use the command tr (translate) to replace or delete individual characters.

$ echo 'hello world!' | tr ' ' '_'
hello_world!
tr can also be used to delete individual characters
$ echo 'hello world!' | tr -d ' !'
helloworld

Replacing and Deleting Values

One of the popular usages of tr is to convert text to uppercase

$ echo 'hello world!' | tr '[a-z]' '[A-Z]'
HELLO WORLD!
or
$ echo 'hello world!' | tr '[:lower:]' '[:upper:]'
HELLO WORLD!
upper to lower
$ echo "HELLO WORLD!" | tr '[A-Z]' ['a-z']
hello world!

Replacing and Deleting Values

We can modify the input in many ways with sed, but the most useful is

general usage
$ echo 'hello world!' | sed 's/hello/bye/'
bye world!

I sed can take files as input

To make multiple replacements on a line, use
$ sed s/POLARX5/POLARG55/g IGSNetwork.csv > newfile.inp

Testing your knowledge

Quiz 4.2:

Comment lines in the file IGSNetwork.csv start with the character “#”. Using the
command sed, comment all the lines starting with “O”. Save the output with a different
filename.

Filtering Rows

I awk is an advanced filter allowing a wide variety of operations on its input

I the GNU implementation is gawk

I The generic structure of an awk script is:

condition1 {action1}
condition2 {action2}
...

Filtering Rows

I Many scripts just consist of a single pattern-action pair, so they are specified on the
command line, e.g.

print the line with the sampling rate
$ awk '/SAMPLING INTERVAL/ {print}' tdpfile
the default action is to print the entire record
$ awk '/SAMPLING INTERVAL/' tdpfile

Filtering Rows

I Similarly the default condition is to match every line, so we might do

which will print every record preceded by its number
$ awk '{print NR,$0}' tdpfile
e.g. this will print the first line (record)
awk 'NR==1{print $0}' tdpfile

Filtering Rows

I Records & Fields

I awk splits its input into records (by default lines)

Figure 2: Records and Fields in awk

Filtering Rows

I Variable FNR and NR automatically count the number of records read from the
current file and in total respectively

I Variable NF is automatically set to the number of fields

I Values of each field are given by $1,$2,...$NF ($0 is the full record)

e.g. this will print the first line (record)
awk 'NR==1{print $0}' filename

Filtering Rows

Example
print columns 1,2 and 3 if field 1 equals to "ONSA"
$ awk '$1=="ONSA"{print $1,$2,$3}' tdpfile
use `substr` inside `awk` to select a sub-string
the condition is : the 3 first chars of $2 match :21
$ awk 'substr($2,1,3)=="21:"{print $2}' tdpfile

Filtering Rows

I Using printf inside awk

I printf(format,arguments) format is a string describing how to print arguments

prints $1 as a decimal integer, $2 as a floating-point number, and
printf("%d %f %s\n",$1,$2,$3)

Filtering Rows

Example
the input file looks like : 2010 2.5 NCL
awk '{printf("%d %f %s\n",$1,$2,$3) }' filename
$3 as a string, all separated by spaces, followed by a newline

Testing your knowledge

Quiz 4.3: Using the dcb.dat file print GPS(“G”) informations for the Space Vehicle
Number" (SVN) 23 and Pseudo Random Noise code (PRN) 26.

Filtering Rows

BEGIN & END conditions in awk

I The BEGIN condition is met before any lines of input are read

I If the script only has a BEGIN condition, no input is read

I Variables are not passed to the script until after the BEGIN action, unless the -v
syntax is used

e.g. we pass the variable test=1
awk -v test=1 'BEGIN {print test*2}'

Filtering Rows

BEGIN & END conditions in awk

I The END condition is met once all input is read can be used to output results, e.g.

awk '$1!="#" {sum+=$1} END {print sum}'
or
awk '$1!="#" {sum+=$1; N++} END {print sum/N}'

Filtering Rows

BEGIN & END conditions in awk

Example: calculate the average of the TROTOT field in tdpfile
$ awk 'substr($2,1,3)=="21:" {sum+=$4; N++} END {print sum/N}' tdpfile

Filtering Rows

Expressions and built-in functions

I Logical expressions && (AND); || (OR); !(NOT)

I Arithmetic expressions and built-in functions

sign operation

+ - * ususal
or ˆ power
% remainder

int(x) sqrt(x) sin(x) atan2(y,x) log(x) exp(x) rand

Filtering Rows

I Passing variables to awk

Example
for some reason you want to scale the avg by a factor of 2
$ awk 'substr($2,1,3)=="21:" {sum+=$4; N++} END {print (sum/N)*scale}'\
scale=2 tdpfile

I Using delimeters in awk

Example
let's read the first column of the csv file IGSNetwork.csv
$ awk -F, 'NR>1{print $1}' IGSNetwork.csv | more

Merging Columns

I paste merges files line by line (tab-separated)

I beaware: if files are different length

paste file1.txt file2.txt

Merging Columns
Let’s extract the first and 4th columns of “IGSNetwork.csv”, then merge them using
paste

first file
$ awk -F, 'NR>1{print $1}' IGSNetwork.csv > file1.txt
second file : 4th column
$ awk -F, 'NR>1{print $4}' IGSNetwork.csv > file2.txt
merge and redirect to a new file
$ paste file1.txt file2.txt > merge_file.txt
dislpay first 4 lines
$ head -n 4 merge_file.txt
ABMF00GLP 1774604.0
ABPO00MDG -2065771.3676
ACRG00GHA 622822.4766
ADIS00ETH 995383.145

Summary

I We introduced ways for scrubbing data using cut, awk and sed commands.
I In practice, you need to combine multiple different command tools to obtain the

desired format.
I We introduced basic programming operations within awk for quick filtering and

manipulation of data.

