
CEG2722: Data Analysis II
Command Line Data Processing

- Lecture 5 : Putting it all together -

Achraf Koulali

Geospatial Engineering

December 13, 2021

bash scripting
Variables : review

I There are a few ways in which variables may be set (such as part of the execution
of a command) but the basic form follows this pattern:

assign value to variable
$ variable=value

I To use the variable we then place its name preceded by a $ sign.

e.g variable
$ var=2
print the variable
$ echo $var
2

bash scripting

I A script is just a series of commands placed in a file and executed this way

execute within the current shell with e.g.
$./myscript.sh

execute within a subshell
$ bash myscript.sh

bash scripting

Example to illustrate variable usage
#!/bin/bash
A simple variable example
myvariable=Hello
anothervar=Fred
echo $myvariable $anothervar
echo
sampledir=/etc
ls $sampledir

bash scripting

Example to illustrate variable usage
running the previous example
$./simplevariables.sh
Hello Fred

acpi gtk-2.0 ...

Arithmetics

There are several ways to go about arithmetic in Bash scripting.

I let is a builtin function of Bash that allows us to do simple arithmetic.

let <arithmetic expression>

Arithmetics

$ let a=5+4
$ echo $a
9
$ let "a = 5 + 4"
$ echo $a
9
$ let a++
echo $a
10
$ let "a = 4 * 5"
$ echo $a
20
$ let b=1
$ let "a = $b + 30"
$ echo $a
31

Arithmetics

I $((expression)) double parentheses

$ a=$((4 + 5))
$ echo $a
9

$ b=$(($a + 4))
$ echo $b
13

$ $((b += 3))
$ echo $b
16

Arithmetics

I With awk, you can adjust the precision of the printed results.

I You can do integer and floating-point arithmetic.

Example
$ echo "3.5 6.1" | awk '{print $1*$2}'
21.35
$ echo "3.5 6.1" | awk '{print sqrt($1*$2)}'
4.62061
$ echo "3.5 6.1" | awk '{print $1^2}'
12.25

bash scripting : Why?

I Automate a series of commands

I shell can call any other command-line program
I consistent processing (or re-processing) of data
I create families of similar datasets/visualisations
I repetitive tasks → Loops

I Document what processing has been done (usage of comments)

I Share tools and techniques

bash scripting : Why?

I Automate a series of commands
I shell can call any other command-line program

I consistent processing (or re-processing) of data
I create families of similar datasets/visualisations
I repetitive tasks → Loops

I Document what processing has been done (usage of comments)

I Share tools and techniques

bash scripting : Why?

I Automate a series of commands
I shell can call any other command-line program
I consistent processing (or re-processing) of data

I create families of similar datasets/visualisations
I repetitive tasks → Loops

I Document what processing has been done (usage of comments)

I Share tools and techniques

bash scripting : Why?

I Automate a series of commands
I shell can call any other command-line program
I consistent processing (or re-processing) of data
I create families of similar datasets/visualisations

I repetitive tasks → Loops

I Document what processing has been done (usage of comments)

I Share tools and techniques

bash scripting : Why?

I Automate a series of commands
I shell can call any other command-line program
I consistent processing (or re-processing) of data
I create families of similar datasets/visualisations
I repetitive tasks → Loops

I Document what processing has been done (usage of comments)

I Share tools and techniques

bash scripting : Why?

I Automate a series of commands
I shell can call any other command-line program
I consistent processing (or re-processing) of data
I create families of similar datasets/visualisations
I repetitive tasks → Loops

I Document what processing has been done (usage of comments)

I Share tools and techniques

bash scripting : Why?

I Automate a series of commands
I shell can call any other command-line program
I consistent processing (or re-processing) of data
I create families of similar datasets/visualisations
I repetitive tasks → Loops

I Document what processing has been done (usage of comments)

I Share tools and techniques

Test your knowledge

Quiz 5.1: The Julian date (JD) is the number of mean solar days elapsed since January
1st, 4713 B.C., 12:00. Write a bash script to convert the date given in
year(Y),month(M) and day(D) to JD.

I Use the following formulas (e.g., Hoffman-Wellenhof book):

JD = int(365.25y) + int[30.6001(m + 1)] + D + UT/24 + 1720981.5

where,

y = Y − 1 and m = M + 12, if M < 2 or M = 2

y = Y and m = M, if M > 2

Let’s do this quiz together

Loops

Loops allow us to take a series of commands and keep re-running them until a particular
situation is reached. They are useful for automating repetitive tasks.

I for loop: for each item in a given list, perform the given set of commands.

for var in <list>
do

<commands>
done

Loops

One liner
for i in wordlist; do command; done

script style / more readable format
for i in wordlist
do

command
done

Loops

Example of for Loop
#!/bin/bash
Basic for loop
names='Stan Kyle Cartman'

for name in $names
do

echo $name
done

echo End

Loops

Example: setup a series of input files for each day of the year

for doy in {001..365}; do sed s/DOY/$doy/g template.inp > doy${doy}.inp; done

Loops

Using for loops to process many files

I Instead of brace expansion, we can use pattern expansion just to work on the files
that are present

Example
#!/bin/bash
Check antenna type for MORP GPS data
for file in morp*.??o; do

egrep 'ANT' $file | egrep AOAD/M_T >/dev/null && echo $file OK\
|| echo $file bad: && egrep 'ANT ' $file

done

Loops

Using for loops to process many files

for file in `command list of files`
do

find <keyword> $file
done

Conditional statements in bash

A basic if statement :

if [<some test>]
then

<commands>
elif [<some test>]
then

<different commands>
else

<other commands>
fi

Conditional statements in bash

Example: If statement
#!/bin/bash
$1 and $2 are the script's input arguments
if [$1 -ge 18]
then

echo You may go to the party.
elif [$2 == 'yes']
then

echo You may go to the party but be back before midnight.
else

echo You may not go to the party.
fi

Conditional statements in bash

I Using boolean operations:
I and - &&
I or - ||

Example of boolean operations with if

#!/bin/bash
#
if [$MODULE == 'CEG2722'] || [$MODULE == 'CEG1713']
then

echo "you're welcome"
else

echo "you're in the wrong place!!"
fi

Test your knowledge

Quiz 5.2: Write a script that checks wich GPS rinex file for the site “MORP” has the
wrong receiver model?

hint: now your turn to complete the for loop
for file in ...

...
done

Your turn.

Test your knowledge

Quiz 5.3: Download all the GBR Tide gauges time series from the PMSL website:

https://www.psmsl.org/data/obtaining/

I Clean all the time series, by removing all the missing data marked as “-99999” and
redirect the output in a newfile for each station.

I Fit a linear trend to the sea level data for each station.

Let’s do it together

Summary CEG2722

I Make each program/script do one thing well.

I Document your script by adding comments at each step

I Use wildcards and/or ‘for‘ loops to work with multiple files

I ‘awk‘ allows very flexible reformatting and summary computations on output files /
datasets

I Learning by doing. . .

Summary CEG2722

I Make each program/script do one thing well.

I Document your script by adding comments at each step

I Use wildcards and/or ‘for‘ loops to work with multiple files

I ‘awk‘ allows very flexible reformatting and summary computations on output files /
datasets

I Learning by doing. . .

Summary CEG2722

I Make each program/script do one thing well.

I Document your script by adding comments at each step

I Use wildcards and/or ‘for‘ loops to work with multiple files

I ‘awk‘ allows very flexible reformatting and summary computations on output files /
datasets

I Learning by doing. . .

Summary CEG2722

I Make each program/script do one thing well.

I Document your script by adding comments at each step

I Use wildcards and/or ‘for‘ loops to work with multiple files

I ‘awk‘ allows very flexible reformatting and summary computations on output files /
datasets

I Learning by doing. . .

Summary CEG2722

I Make each program/script do one thing well.

I Document your script by adding comments at each step

I Use wildcards and/or ‘for‘ loops to work with multiple files

I ‘awk‘ allows very flexible reformatting and summary computations on output files /
datasets

I Learning by doing. . .

